SKEDSOFT

Data Mining & Data Warehousing

Introduction:

Data generalization summarizes data by replacing relatively low-level values (such as numeric values for an attribute age) with higher-level concepts (such as young, middle aged and senior). Given the large amount of data stored in databases, it is useful to be able to describe concepts in concise and succinct terms at generalized (rather than low) levels of abstraction.

Allowing data sets to be generalized at multiple levels of abstraction facilitates users in examining the general behavior of the data. Given the All Electronics database, for example, instead of examining individual customer transactions, sales managers may prefer to view the data generalized to higher levels, such as summarized by customer groups according to geographic regions, frequency of purchases per group, and customer income.

This leads us to the notion of concept description, which is a form of data generalization. A concept typically refers to a collection of data such as frequent buyers, graduate students, and so on. As a data mining task, concept description is not a simple enumeration of the data. Instead, concept description generates descriptions for the characterization and comparison of the data. It is sometimes called class description, when the concept to be described refers to a class of objects. Characterization provides a concise and succinct summarization of the given collection of data, while concept or class comparison (also known as discrimination) provides descriptions comparing two or more collections of data.

Up to this point, we have studied data cube (or OLAP) approaches to concept description using multidimensional, multilevel data generalization in data warehouses. “Is data cube technology sufficient to accomplish all kinds of concept description tasks for large data sets?” Consider the following cases.

Complex data types and aggregation: Data warehouses and OLAP tools are based on a multidimensional data model that views data in the form of a data cube, consisting of dimensions (or attributes) and measures (aggregate functions). However, many current OLAP systems confine dimensions to nonnumeric data and measures to numeric data. In reality, the database can include attributes of various data types, including numeric, nonnumeric, spatial, text, or image, which ideally should be included in the concept description. Furthermore, the aggregation of attributes in a database may include sophisticated data types, such as the collection of nonnumeric data, the merging of spatial regions, the composition of images, the integration of texts, and the grouping of object pointers. Therefore, OLAP, with its restrictions on the possible dimension and measure types, represents a simplified model for data analysis.

Concept description should handle complex data types of the attributes and their aggregations, as necessary. User-control versus automation: On-line analytical processing in data warehouses is a user-controlled process. The selection of dimensions and the application of OLAP operations, such as drill-down, roll-up, slicing, and dicing, are primarily directed and controlled by the users. Although the control in most OLAP systems is quite user-friendly, users do require a good understanding of the role of each dimension. Furthermore, in order to find a satisfactory description of the data, users may need to specify a long sequence of OLAP operations. It is often desirable to have a more automated process that helps users determine which dimensions (or attributes) should be included in the analysis, and the degree to which the given data set should be generalized in order to produce an interesting summarization of the data.

This section presents an alternative method for concept description, called attribute oriented induction, which works for complex types of data and relies on a data-driven generalization process.